Analysis of Smad nucleocytoplasmic shuttling in living cells
نویسندگان
چکیده
منابع مشابه
Analysis of Smad nucleocytoplasmic shuttling in living cells.
Transforming growth factor beta (TGF-beta) signalling leads to phosphorylation and activation of receptor-regulated Smad2 and Smad3, which form complexes with Smad4 and accumulate in the nucleus. The Smads, however, do not seem to reside statically in the cytoplasm in the absence of signalling or in the nucleus upon TGF-beta stimulation, but have been suggested to shuttle continuously between t...
متن کاملNucleocytoplasmic Shuttling of Endocytic Proteins
Many cellular processes rely on the ordered assembly of macromolecular structures. Here, we uncover an unexpected link between two such processes, endocytosis and transcription. Many endocytic proteins, including eps15, epsin1, the clathrin assembly lymphoid myeloid leukemia (CALM), and alpha-adaptin, accumulate in the nucleus when nuclear export is inhibited. Endocytosis and nucleocytoplasmic ...
متن کاملNucleocytoplasmic shuttling of soluble tubulin in mammalian cells.
We have investigated the subcellular distribution and dynamics of soluble tubulin in unperturbed and transfected HeLa cells. Under normal culture conditions, endogenous alpha/beta tubulin is confined to the cytoplasm. However, when the soluble pool of subunits is elevated by combined cold-nocodazole treatment and when constitutive nuclear export is inhibited by leptomycin B, tubulin accumulates...
متن کاملMathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system.
TGF-beta-induced Smad signal transduction from the membrane into the nucleus is not linear and unidirectional, but rather a dynamic network that couples Smad phosphorylation and dephosphorylation through continuous nucleocytoplasmic shuttling of Smads. To understand the quantitative behavior of this network, we have developed a tightly constrained computational model, exploiting the interplay b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Science
سال: 2004
ISSN: 1477-9137,0021-9533
DOI: 10.1242/jcs.01289